Serveur d'exploration sur l'OCR

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Performance of SOFC coupled with n-C4H10 autothermal reformer: Carbon deposition and development of anode structure

Identifieur interne : 000771 ( Main/Exploration ); précédent : 000770; suivant : 000772

Performance of SOFC coupled with n-C4H10 autothermal reformer: Carbon deposition and development of anode structure

Auteurs : Gyujong Bae [Corée du Sud] ; Joongmyeon Bae [Corée du Sud] ; Pattaraporn Kim-Lohsoontorn [Corée du Sud, Thaïlande] ; Jihoon Jeong [Corée du Sud]

Source :

RBID : Pascal:11-0087936

Descripteurs français

English descriptors

Abstract

The performance deterioration of solid oxide fuel cells (SOFCs, Nickel-Yttria stabilized zirconia (Ni-YSZ)/YSZ/lanthanum doped strontium manganite-YSZ (LSM-YSZ)) coupled with n-C4H10 steam reformers (SR), autothermal reformers (ATR), or catalytic partial oxidation reformers (CPOX) was examined using an integrated system of a micro-reactor reformer and SOFC unit. The terminal voltage rapidly degraded in CPOX-driven SOFC (oxygen to carbon ratio (OCR) = 0.5) while it was fairly stable for SR-driven SOFC (steam to carbon ratio (SCR) = 2) over 250 h. For ATR-driven SOFC at near the thermoneutral point (OCR = 0.5 and steam to carbon ration (SCR) = 1.3), significant deterioration of the terminal voltage was observed in 100 h of operation. The main precursors of carbon deposition on the SOFC were identified by reformate gas analysis during the tests. In this study, we reveal that the carbon deposition on the SOFC anode can be affected by not only lower-order hydrocarbons (C1C4), but also by the CO/H2 gas mixture. The change in electrical conductivity of the Ni-YSZ cermet used for the SOFC anode was investigated under different gas mixtures. To investigate the propensity for carbon deposition by each carbon-containing gas mixture, we defined the ratios of steam to specific carbon (C1C4 lower-order hydrocarbons and CO) in the reformate gas (SSCR, steam to specific carbon ratio). To inhibit carbon deposition on SOFC anode, the SSCR must be sufficiently high. However, the reformer operates near its maximum efficiency at low SSCR value and the higher the SSCR value, the lower the open circuit voltage and operating power density due to Nernst potential. In this study, a metal-foam supported SOFC single cell (Ni-YSZ/YSZ/Gd-doped ceria (CGO) buffer layer/lanthanum strontium cobalt ferrite-samarium doped ceria (LSCF-SDC)), impregnated with catalyst was designed; this novel SOFC was then examined for operation at a low SSCR value of the autothermal reformer conditions (near maximum efficiency of n-C4H10 reformer and thermal neutral point, SSCR = 0.5, OCR = 0.5 and SCR = 1.3). The voltage for the metal-foam supported SOFC impregnated with 0.5 wt% Rh/ CGO remained at a nearly constant value, around 0.8 V, for 200 h under a constant temperature of 750 °C and current load of 250 mA cm-2.


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Performance of SOFC coupled with n-C
<sub>4</sub>
H
<sub>10</sub>
autothermal reformer: Carbon deposition and development of anode structure</title>
<author>
<name sortKey="Bae, Gyujong" sort="Bae, Gyujong" uniqKey="Bae G" first="Gyujong" last="Bae">Gyujong Bae</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, Korea Advance Institute of Science and Technology (KAIST)</s1>
<s2>Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Daejeon 305-701</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bae, Joongmyeon" sort="Bae, Joongmyeon" uniqKey="Bae J" first="Joongmyeon" last="Bae">Joongmyeon Bae</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, Korea Advance Institute of Science and Technology (KAIST)</s1>
<s2>Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Daejeon 305-701</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>KI for Eco-Energy, Korea Advance Institute of Science and Technology (KAIST), Guseong-dong</s1>
<s2>Yuseong-gu, Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Yuseong-gu, Daejeon 305-701</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim Lohsoontorn, Pattaraporn" sort="Kim Lohsoontorn, Pattaraporn" uniqKey="Kim Lohsoontorn P" first="Pattaraporn" last="Kim-Lohsoontorn">Pattaraporn Kim-Lohsoontorn</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>KI for Eco-Energy, Korea Advance Institute of Science and Technology (KAIST), Guseong-dong</s1>
<s2>Yuseong-gu, Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Yuseong-gu, Daejeon 305-701</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Chemical Engineering, Mahidol University</s1>
<s2>Nakorn Pathom 73170</s2>
<s3>THA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Thaïlande</country>
<wicri:noRegion>Nakorn Pathom 73170</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jeong, Jihoon" sort="Jeong, Jihoon" uniqKey="Jeong J" first="Jihoon" last="Jeong">Jihoon Jeong</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, Korea Advance Institute of Science and Technology (KAIST)</s1>
<s2>Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Daejeon 305-701</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0087936</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 11-0087936 INIST</idno>
<idno type="RBID">Pascal:11-0087936</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000152</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000621</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000145</idno>
<idno type="wicri:doubleKey">0360-3199:2010:Bae G:performance:of:sofc</idno>
<idno type="wicri:Area/Main/Merge">000776</idno>
<idno type="wicri:Area/Main/Curation">000771</idno>
<idno type="wicri:Area/Main/Exploration">000771</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Performance of SOFC coupled with n-C
<sub>4</sub>
H
<sub>10</sub>
autothermal reformer: Carbon deposition and development of anode structure</title>
<author>
<name sortKey="Bae, Gyujong" sort="Bae, Gyujong" uniqKey="Bae G" first="Gyujong" last="Bae">Gyujong Bae</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, Korea Advance Institute of Science and Technology (KAIST)</s1>
<s2>Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Daejeon 305-701</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bae, Joongmyeon" sort="Bae, Joongmyeon" uniqKey="Bae J" first="Joongmyeon" last="Bae">Joongmyeon Bae</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, Korea Advance Institute of Science and Technology (KAIST)</s1>
<s2>Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Daejeon 305-701</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>KI for Eco-Energy, Korea Advance Institute of Science and Technology (KAIST), Guseong-dong</s1>
<s2>Yuseong-gu, Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Yuseong-gu, Daejeon 305-701</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim Lohsoontorn, Pattaraporn" sort="Kim Lohsoontorn, Pattaraporn" uniqKey="Kim Lohsoontorn P" first="Pattaraporn" last="Kim-Lohsoontorn">Pattaraporn Kim-Lohsoontorn</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>KI for Eco-Energy, Korea Advance Institute of Science and Technology (KAIST), Guseong-dong</s1>
<s2>Yuseong-gu, Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Yuseong-gu, Daejeon 305-701</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Chemical Engineering, Mahidol University</s1>
<s2>Nakorn Pathom 73170</s2>
<s3>THA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Thaïlande</country>
<wicri:noRegion>Nakorn Pathom 73170</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jeong, Jihoon" sort="Jeong, Jihoon" uniqKey="Jeong J" first="Jihoon" last="Jeong">Jihoon Jeong</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Mechanical Engineering, Korea Advance Institute of Science and Technology (KAIST)</s1>
<s2>Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Daejeon 305-701</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">International journal of hydrogen energy</title>
<title level="j" type="abbreviated">Int. j. hydrogen energy</title>
<idno type="ISSN">0360-3199</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">International journal of hydrogen energy</title>
<title level="j" type="abbreviated">Int. j. hydrogen energy</title>
<idno type="ISSN">0360-3199</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anode</term>
<term>Autothermal reformer processes</term>
<term>Catalyst</term>
<term>Cerium oxide</term>
<term>Cobalt</term>
<term>Electrical conductivity</term>
<term>Ferrite</term>
<term>Fuel cell</term>
<term>Gas mixture</term>
<term>Hydrocarbon</term>
<term>Hydrogen</term>
<term>Lanthanum</term>
<term>Nickel</term>
<term>Partial oxidation</term>
<term>Performance</term>
<term>Rhodium</term>
<term>Samarium</term>
<term>Solid oxide fuel cell</term>
<term>Steam reforming</term>
<term>Water vapor</term>
<term>Zirconia</term>
<term>Zirconium oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Performance</term>
<term>Pile combustible</term>
<term>Pile combustible oxyde solide</term>
<term>Anode</term>
<term>Nickel</term>
<term>Zircone</term>
<term>Oxyde de zirconium</term>
<term>Lanthane</term>
<term>Reformage vapeur</term>
<term>Oxydation partielle</term>
<term>Vapeur eau</term>
<term>Hydrocarbure</term>
<term>Mélange gaz</term>
<term>Conductivité électrique</term>
<term>Oxyde de cérium</term>
<term>Cobalt</term>
<term>Ferrite</term>
<term>Samarium</term>
<term>Catalyseur</term>
<term>Rhodium</term>
<term>Processus reformage autothermique</term>
<term>Hydrogène</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Nickel</term>
<term>Hydrocarbure</term>
<term>Cobalt</term>
<term>Hydrogène</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The performance deterioration of solid oxide fuel cells (SOFCs, Nickel-Yttria stabilized zirconia (Ni-YSZ)/YSZ/lanthanum doped strontium manganite-YSZ (LSM-YSZ)) coupled with n-C
<sub>4</sub>
H
<sub>10</sub>
steam reformers (SR), autothermal reformers (ATR), or catalytic partial oxidation reformers (CPOX) was examined using an integrated system of a micro-reactor reformer and SOFC unit. The terminal voltage rapidly degraded in CPOX-driven SOFC (oxygen to carbon ratio (OCR) = 0.5) while it was fairly stable for SR-driven SOFC (steam to carbon ratio (SCR) = 2) over 250 h. For ATR-driven SOFC at near the thermoneutral point (OCR = 0.5 and steam to carbon ration (SCR) = 1.3), significant deterioration of the terminal voltage was observed in 100 h of operation. The main precursors of carbon deposition on the SOFC were identified by reformate gas analysis during the tests. In this study, we reveal that the carbon deposition on the SOFC anode can be affected by not only lower-order hydrocarbons (C
<sub>1</sub>
C
<sub>4</sub>
), but also by the CO/H
<sub>2</sub>
gas mixture. The change in electrical conductivity of the Ni-YSZ cermet used for the SOFC anode was investigated under different gas mixtures. To investigate the propensity for carbon deposition by each carbon-containing gas mixture, we defined the ratios of steam to specific carbon (C
<sub>1</sub>
C
<sub>4</sub>
lower-order hydrocarbons and CO) in the reformate gas (SSCR, steam to specific carbon ratio). To inhibit carbon deposition on SOFC anode, the SSCR must be sufficiently high. However, the reformer operates near its maximum efficiency at low SSCR value and the higher the SSCR value, the lower the open circuit voltage and operating power density due to Nernst potential. In this study, a metal-foam supported SOFC single cell (Ni-YSZ/YSZ/Gd-doped ceria (CGO) buffer layer/lanthanum strontium cobalt ferrite-samarium doped ceria (LSCF-SDC)), impregnated with catalyst was designed; this novel SOFC was then examined for operation at a low SSCR value of the autothermal reformer conditions (near maximum efficiency of n-C
<sub>4</sub>
H
<sub>10</sub>
reformer and thermal neutral point, SSCR = 0.5, OCR = 0.5 and SCR = 1.3). The voltage for the metal-foam supported SOFC impregnated with 0.5 wt% Rh/ CGO remained at a nearly constant value, around 0.8 V, for 200 h under a constant temperature of 750 °C and current load of 250 mA cm
<sup>-2</sup>
.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Corée du Sud</li>
<li>Thaïlande</li>
</country>
</list>
<tree>
<country name="Corée du Sud">
<noRegion>
<name sortKey="Bae, Gyujong" sort="Bae, Gyujong" uniqKey="Bae G" first="Gyujong" last="Bae">Gyujong Bae</name>
</noRegion>
<name sortKey="Bae, Joongmyeon" sort="Bae, Joongmyeon" uniqKey="Bae J" first="Joongmyeon" last="Bae">Joongmyeon Bae</name>
<name sortKey="Bae, Joongmyeon" sort="Bae, Joongmyeon" uniqKey="Bae J" first="Joongmyeon" last="Bae">Joongmyeon Bae</name>
<name sortKey="Jeong, Jihoon" sort="Jeong, Jihoon" uniqKey="Jeong J" first="Jihoon" last="Jeong">Jihoon Jeong</name>
<name sortKey="Kim Lohsoontorn, Pattaraporn" sort="Kim Lohsoontorn, Pattaraporn" uniqKey="Kim Lohsoontorn P" first="Pattaraporn" last="Kim-Lohsoontorn">Pattaraporn Kim-Lohsoontorn</name>
</country>
<country name="Thaïlande">
<noRegion>
<name sortKey="Kim Lohsoontorn, Pattaraporn" sort="Kim Lohsoontorn, Pattaraporn" uniqKey="Kim Lohsoontorn P" first="Pattaraporn" last="Kim-Lohsoontorn">Pattaraporn Kim-Lohsoontorn</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/OcrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000771 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000771 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    OcrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     Pascal:11-0087936
   |texte=   Performance of SOFC coupled with n-C4H10 autothermal reformer: Carbon deposition and development of anode structure
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 16:53:45 2017. Site generation: Mon Mar 11 23:15:16 2024